Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 222(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37843535

ABSTRACT

With each breath, oxygen diffuses across remarkably thin alveolar type I (AT1) cells into underlying capillaries. Interspersed cuboidal AT2 cells produce surfactant and act as stem cells. Even transient disruption of this delicate barrier can promote capillary leak. Here, we selectively ablated AT1 cells, which uncovered rapid AT2 cell flattening with near-continuous barrier preservation, culminating in AT1 differentiation. Proliferation subsequently restored depleted AT2 cells in two phases, mitosis of binucleated AT2 cells followed by replication of mononucleated AT2 cells. M phase entry of binucleated and S phase entry of mononucleated cells were both triggered by AT1-produced hbEGF signaling via EGFR to Wnt-active AT2 cells. Repeated AT1 cell killing elicited exuberant AT2 proliferation, generating aberrant daughter cells that ceased surfactant function yet failed to achieve AT1 differentiation. This hyperplasia eventually resolved, yielding normal-appearing alveoli. Overall, this specialized regenerative program confers a delicate simple epithelium with functional resiliency on par with the physical durability of thicker, pseudostratified, or stratified epithelia.


Subject(s)
Lung , Stem Cells , Surface-Active Agents , Cell Differentiation , Cell Division , Cells, Cultured , Stem Cells/cytology
2.
Exp Mol Med ; 55(8): 1831-1842, 2023 08.
Article in English | MEDLINE | ID: mdl-37582976

ABSTRACT

We present an in-depth single-cell atlas of in vitro multiculture systems on human primary airway epithelium derived from normal and diseased lungs of 27 individual donors. Our large-scale single-cell profiling identified new cell states and differentiation trajectories of rare airway epithelial cell types in human distal lungs. By integrating single-cell datasets of human lung tissues, we discovered immune-primed subsets enriched in lungs and organoids derived from patients with chronic respiratory disease. To demonstrate the full potential of our platform, we further illustrate transcriptomic responses to various respiratory virus infections in vitro airway models. Our work constitutes a single-cell roadmap for the cellular and molecular characteristics of human primary lung cells in vitro and their relevance to human tissues in vivo.


Subject(s)
Epithelial Cells , Lung , Humans , Epithelial Cells/metabolism , Epithelium , Cell Differentiation/physiology , Organoids
3.
Nature ; 619(7971): 860-867, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468622

ABSTRACT

Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.


Subject(s)
Adenocarcinoma of Lung , Cellular Reprogramming , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Stem Cells , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cellular Reprogramming/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Stem Cells/metabolism , Stem Cells/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism
4.
Nat Commun ; 13(1): 7137, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36414616

ABSTRACT

The lung's gas exchange surface is comprised of alveolar AT1 and AT2 cells that are corrupted in several common and deadly diseases. They arise from a bipotent progenitor whose differentiation is thought to be dictated by differential mechanical forces. Here we show the critical determinant is FGF signaling. Fgfr2 is expressed in the developing progenitors in mouse then restricts to nascent AT2 cells and remains on throughout life. Its ligands are expressed in surrounding mesenchyme and can, in the absence of exogenous mechanical cues, induce progenitors to form alveolospheres with intermingled AT2 and AT1 cells. FGF signaling directly and cell autonomously specifies AT2 fate; progenitors lacking Fgfr2 in vitro and in vivo exclusively acquire AT1 fate. Fgfr2 loss in AT2 cells perinatally results in reprogramming to AT1 identity, whereas loss or inhibition later in life triggers AT2 apoptosis and compensatory regeneration. We propose that Fgfr2 signaling selects AT2 fate during development, induces a cell non-autonomous AT1 differentiation signal, then continuously maintains AT2 identity and survival throughout life.


Subject(s)
Alveolar Epithelial Cells , Mesoderm , Animals , Mice , Cell Differentiation , Signal Transduction , Apoptosis
5.
Am J Respir Cell Mol Biol ; 67(3): 284-308, 2022 09.
Article in English | MEDLINE | ID: mdl-35679511

ABSTRACT

Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.


Subject(s)
Respiratory Distress Syndrome , Humans , Lung , Risk Factors , Severity of Illness Index , Thorax
6.
Thorax ; 77(12): 1176-1186, 2022 12.
Article in English | MEDLINE | ID: mdl-35580897

ABSTRACT

INTRODUCTION: Chronic lung disease, that is, bronchopulmonary dysplasia (BPD) is the most common complication in preterm infants and develops as a consequence of the misguided formation of the gas-exchange area undergoing prenatal and postnatal injury. Subsequent vascular disease and its progression into pulmonary arterial hypertension critically determines long-term outcome in the BPD infant but lacks identification of early, disease-defining changes. METHODS: We link impaired bone morphogenetic protein (BMP) signalling to the earliest onset of vascular pathology in the human preterm lung and delineate the specific effects of the most prevalent prenatal and postnatal clinical risk factors for lung injury mimicking clinically relevant conditions in a multilayered animal model using wild-type and transgenic neonatal mice. RESULTS: We demonstrate (1) the significant reduction in BMP receptor 2 (BMPR2) expression at the onset of vascular pathology in the lung of preterm infants, later mirrored by reduced plasma BMP protein levels in infants with developing BPD, (2) the rapid impairment (and persistent change) of BMPR2 signalling on postnatal exposure to hyperoxia and mechanical ventilation, aggravated by prenatal cigarette smoke in a preclinical mouse model and (3) a link to defective alveolar septation and matrix remodelling through platelet derived growth factor-receptor alpha deficiency. In a treatment approach, we partially reversed vascular pathology by BMPR2-targeted treatment with FK506 in vitro and in vivo. CONCLUSION: We identified impaired BMP signalling as a hallmark of early vascular disease in the injured neonatal lung while outlining its promising potential as a future biomarker or therapeutic target in this growing, high-risk patient population.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Vascular System Injuries , Infant , Infant, Newborn , Humans , Mice , Animals , Infant, Premature , Vascular System Injuries/complications , Vascular System Injuries/pathology , Bronchopulmonary Dysplasia/etiology , Hyperoxia/complications , Hyperoxia/metabolism , Hyperoxia/pathology , Lung , Mice, Transgenic , Risk Factors , Animals, Newborn
7.
Cytotherapy ; 24(8): 774-788, 2022 08.
Article in English | MEDLINE | ID: mdl-35613962

ABSTRACT

The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.


Subject(s)
Critical Illness , Lung Diseases , Cell- and Tissue-Based Therapy , Critical Illness/therapy , Genetic Therapy , Humans , Lung Diseases/genetics , Lung Diseases/therapy , Stem Cells
8.
Mol Ther ; 30(1): 223-237, 2022 01 05.
Article in English | MEDLINE | ID: mdl-33794364

ABSTRACT

Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , CRISPR-Cas Systems , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Mutation , Stem Cells/metabolism
9.
Respir Res ; 22(1): 265, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34666752

ABSTRACT

RATIONALE: αv integrins, key regulators of transforming growth factor-ß activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvß6) and fibroblasts (αvß1) in fibrotic lungs. OBJECTIVES: We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS: Selective αvß6 and αvß1, dual αvß6/αvß1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-ß cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-ß signaling. Bleomycin-challenged mice treated with dual αvß6/αvß1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS: Inhibition of integrins αvß6 and αvß1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvß6/αvß1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS: In the fibrotic lung, dual inhibition of integrins αvß6 and αvß1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-ß.


Subject(s)
Antifibrotic Agents/pharmacology , Epithelial Cells/drug effects , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Integrin alpha6beta1/antagonists & inhibitors , Lung/drug effects , Receptors, Vitronectin/antagonists & inhibitors , Animals , Bleomycin , Cell Line , Coculture Techniques , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Integrin alpha6beta1/metabolism , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Phosphorylation , Receptors, Vitronectin/metabolism , Signal Transduction , Smad3 Protein/metabolism
10.
J Heart Lung Transplant ; 40(8): 856-859, 2021 08.
Article in English | MEDLINE | ID: mdl-34059432

ABSTRACT

As the world responds to the global crisis of the COVID-19 pandemic an increasing number of patients are experiencing increased morbidity as a result of multi-organ involvement. Of these, a small proportion will progress to end-stage lung disease, become dialysis dependent, or both. Herein, we describe the first reported case of a successful combined lung and kidney transplantation in a patient with COVID-19. Lung transplantation, isolated or combined with other organs, is feasible and should be considered for select patients impacted by this deadly disease.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/surgery , COVID-19/complications , COVID-19/surgery , Kidney Transplantation , Lung Transplantation , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/surgery , Humans , Male , Middle Aged
11.
Nature ; 588(7839): 670-675, 2020 12.
Article in English | MEDLINE | ID: mdl-33238290

ABSTRACT

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Subject(s)
COVID-19/virology , Lung/cytology , Models, Biological , Organoids/cytology , Organoids/virology , SARS-CoV-2/physiology , Tissue Culture Techniques , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , COVID-19/metabolism , COVID-19/pathology , Cell Differentiation , Cell Division , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/virology , Humans , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/physiology , Integrin alpha6/analysis , Integrin beta4/analysis , Keratin-5/analysis , Organoids/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , TWEAK Receptor/analysis
12.
bioRxiv ; 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32743583

ABSTRACT

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5 + basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5 + cells contained a distinct ITGA6 + ITGB4 + mitotic population whose proliferation segregated to a TNFRSF12A hi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12A hi subset of FACS-purified ITGA6 + ITGB4 + basal cells from human lung or derivative organoids. In vivo, TNFRSF12A + cells comprised ~10% of KRT5 + basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 apical-out organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.

14.
Article in English | MEDLINE | ID: mdl-32179507

ABSTRACT

The distal lung is a honeycomb-like collection of delicate gas exchange sacs called alveoli lined by two interspersed epithelial cell types: the cuboidal, surfactant-producing alveolar type II (AT2) and the flat, gas-exchanging alveolar type I (AT1) cell. During aging, a subset of AT2 cells expressing the canonical Wnt target gene, Axin2, function as stem cells, renewing themselves while generating new AT1 and AT2 cells. Wnt activity endows AT2 cells with proliferative competency, enabling them to respond to activating cues, and simultaneously blocks AT2 to AT1 cell transdifferentiation. Acute alveolar injury rapidly expands the AT2 stem cell pool by transiently inducing Wnt signaling activity in "bulk" AT2 cells, facilitating rapid epithelial repair. AT2 cell "stemness" is thus tightly regulated by access to Wnts, supplied by a specialized single-cell fibroblast niche during maintenance and by AT2 cells themselves during injury repair. Two non-AT2 "reserve" cell populations residing in the distal airways also contribute to alveolar repair, but only after widespread epithelial injury, when they rapidly proliferate, migrate, and differentiate into airway and alveolar lineages. Here, we review alveolar renewal and repair with a focus on the niches, rather than the stem cells, highlighting what is known about the cellular and molecular mechanisms by which they control stem cell activity in vivo.


Subject(s)
Alveolar Epithelial Cells/physiology , Regeneration , Stem Cell Niche , Aging/physiology , Animals , Humans , Wnt Signaling Pathway
15.
Bio Protoc ; 10(21): e3808, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33659462

ABSTRACT

Understanding tissues in the context of development, maintenance and disease requires determining the molecular profiles of individual cells within their native in vivo spatial context. We developed a Proximity Ligation in situ Hybridization technology (PLISH) that enables quantitative measurement of single cell gene expression in intact tissues, which we have now updated. By recording spatial information for every profiled cell, PLISH enables retrospective mapping of distinct cell classes and inference of their in vivo interactions. PLISH has high sensitivity, specificity and signal to noise ratio. It is also rapid, scalable, and does not require expertise in molecular biology so it can be easily adopted by basic and clinical researchers.

16.
Cell Stem Cell ; 26(2): 161-171.e4, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31839569

ABSTRACT

Cystic fibrosis (CF) is a monogenic disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Mortality in CF patients is mostly due to respiratory sequelae. Challenges with gene delivery have limited attempts to treat CF using in vivo gene therapy, and low correction levels have hindered ex vivo gene therapy efforts. We have used Cas9 and adeno-associated virus 6 to correct the ΔF508 mutation in readily accessible upper-airway basal stem cells (UABCs) obtained from CF patients. On average, we achieved 30%-50% allelic correction in UABCs and bronchial epithelial cells (HBECs) from 10 CF patients and observed 20%-50% CFTR function relative to non-CF controls in differentiated epithelia. Furthermore, we successfully embedded the corrected UABCs on an FDA-approved porcine small intestinal submucosal membrane (pSIS), and they retained differentiation capacity. This study supports further development of genetically corrected autologous airway stem cell transplant as a treatment for CF.


Subject(s)
Cystic Fibrosis , Animals , Cell Differentiation , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells , Epithelium , Humans , Stem Cells , Swine
17.
Science ; 359(6380): 1118-1123, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29420258

ABSTRACT

Alveoli, the lung's respiratory units, are tiny sacs where oxygen enters the bloodstream. They are lined by flat alveolar type 1 (AT1) cells, which mediate gas exchange, and AT2 cells, which secrete surfactant. Rare AT2s also function as alveolar stem cells. We show that AT2 lung stem cells display active Wnt signaling, and many of them are near single, Wnt-expressing fibroblasts. Blocking Wnt secretion depletes these stem cells. Daughter cells leaving the Wnt niche transdifferentiate into AT1s: Maintaining Wnt signaling prevents transdifferentiation, whereas abrogating Wnt signaling promotes it. Injury induces AT2 autocrine Wnts, recruiting "bulk" AT2s as progenitors. Thus, individual AT2 stem cells reside in single-cell fibroblast niches providing juxtacrine Wnts that maintain them, whereas injury induces autocrine Wnts that transiently expand the progenitor pool. This simple niche maintains the gas exchange surface and is coopted in cancer.


Subject(s)
Cell Transdifferentiation , Pulmonary Alveoli/cytology , Stem Cell Niche/physiology , Stem Cells/cytology , Wnt Signaling Pathway , Animals , Fibroblasts/cytology , Fibroblasts/metabolism , Lung/physiology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pulmonary Alveoli/metabolism , Stem Cells/metabolism
18.
Elife ; 72018 01 10.
Article in English | MEDLINE | ID: mdl-29319504

ABSTRACT

A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of 'housekeeping' genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research.


Subject(s)
Automation, Laboratory/methods , Cells/classification , DNA Fingerprinting/methods , In Situ Hybridization/methods , Pathology, Molecular/methods , Single-Cell Analysis/methods , Animals , Lung/cytology , Mice, Inbred C57BL , Sensitivity and Specificity
19.
EMBO Mol Med ; 9(11): 1504-1520, 2017 11.
Article in English | MEDLINE | ID: mdl-28923828

ABSTRACT

Neonatal chronic lung disease (nCLD) affects a significant number of neonates receiving mechanical ventilation with oxygen-rich gas (MV-O2). Regardless, the primary molecular driver of the disease remains elusive. We discover significant enrichment for SNPs in the PDGF-Rα gene in preterms with nCLD and directly test the effect of PDGF-Rα haploinsufficiency on the development of nCLD using a preclinical mouse model of MV-O2 In the context of MV-O2, attenuated PDGF signaling independently contributes to defective septation and endothelial cell apoptosis stemming from a PDGF-Rα-dependent reduction in lung VEGF-A. TGF-ß contributes to the PDGF-Rα-dependent decrease in myofibroblast function. Remarkably, endotracheal treatment with exogenous PDGF-A rescues both the lung defects in haploinsufficient mice undergoing MV-O2 Overall, our results establish attenuated PDGF signaling as an important driver of nCLD pathology with provision of PDGF-A as a protective strategy for newborns undergoing MV-O2.


Subject(s)
Lung Diseases/pathology , Platelet-Derived Growth Factor/metabolism , Animals , Animals, Newborn , Cells, Cultured , Chronic Disease , Fibroblasts/cytology , Fibroblasts/metabolism , Haploinsufficiency , Human Umbilical Vein Endothelial Cells , Humans , Infant, Newborn , Lung/metabolism , Lung Diseases/metabolism , Lung Diseases/prevention & control , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Platelet-Derived Growth Factor/pharmacology , Platelet-Derived Growth Factor/therapeutic use , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Respiration, Artificial , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism
20.
Dev Biol ; 430(1): 214-223, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28811219

ABSTRACT

GW182 (also known asTNRC6) family members are critically involved in the final effector phase of miRNA-mediated mRNA repression. The three mammalian paralogs, TNRC6a, b and c, are thought to be redundant based on Argonaute (Ago) binding, tethering assays, and RNAi silencing of individual members in cell lines. To test this idea, we generated TNRC6a, b and c knockout mice. TNRC6a mutants die at mid-gestation, while b- and c- deleted mice are born at a Mendelian ratio. However, the majority of TNRC6b and all TNRC6c mutants die within 24h after birth, the latter with respiratory failure. Necropsy of TNRC6c mutants revealed normal-appearing airways that give rise to abnormally thick-walled distal gas exchange sacs. Immunohistological analysis of mutant lungs demonstrated a normal distribution of bronchiolar and alveolar cells, indicating that loss of TNRC6c did not abrogate epithelial cell differentiation. The cellular kinetics and relative proportions of endothelial, epithelial, and mesenchymal cells were also not altered. However, the underlying capillary network was simplified and endothelial cells had failed to become tightly apposed to the surface epithelium in TNRC6c mutants, presumably causing the observed respiratory failure. TGFß family mutant mice exhibit a similar lung phenotype of thick-walled air sacs and neonatal lethality, and qRT-PCR confirmed dynamic downregulation of TGFß1 and TGFßR2 in TNRC6c mutant lungs during sacculation. VEGFR, but not VEGF-A ligand, was also lower, likely reflecting the overall reduced capillary density in TNRC6c mutants. Together, these results demonstrate that GW182 paralogs are not functionally redundant in vivo. Surprisingly, despite regulating a general cellular process, TNRC6c is selectively required only in the distal lung and not until late in gestation for proper expression of the TGFß family genes that drive sacculation. These results imply a complex and indirect mode of regulation of sacculation by TNRC6c, mediated in part by dynamic transcriptional repression of an inhibitor of TGFß family gene expression.


Subject(s)
Autoantigens/metabolism , Lung/blood supply , Lung/embryology , Microvessels/embryology , Microvessels/metabolism , Organogenesis , RNA-Binding Proteins/metabolism , Trinucleotide Repeats/genetics , Animals , Autoantigens/genetics , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gases/metabolism , Gene Deletion , Gene Expression Regulation, Developmental , Germ Cells/metabolism , Lung/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mice , Mice, Knockout , Organogenesis/genetics , RNA-Binding Proteins/genetics , Reproducibility of Results , Sequence Homology, Amino Acid , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...